Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway
نویسندگان
چکیده
Caloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملGinkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway
Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blo...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملProtosappanin A protects against atherosclerosis via anti- hyperlipidemia, anti-inflammation and NF-κB signaling pathway in hyperlipidemic rabbits
Objective(s): Protosappanin A (PrA) is an effective and major ingredient of Caesalpinia sappan L. The current study was aimed to explore the effect of PrA on atherosclerosis (AS). Materials and Methods: Firstly, the experimental model of AS was established in rabbits by two-month feeding of high fat diet. Then, the rabbits were randomly divided into five groups and treated with continuous high ...
متن کاملبررسی کیندلینگ الکتریکی به وسیله تحریکات الکتریکی مکرر کف پای موش صحرایی
Background and purpose: Kindling is an animal model of epilepsy induced by repeated stimulation of the brain. The amygdala has been the focus of interest due to large part to its role in epilepsy induction and in fear conditioning in both human and rats. The purpose of the present study was to evaluate whether low electrical stimulation of foot pad of rats during fear can facilitate amygdala...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015